logo
logo
ArEn

نتایج جست و جو:

108

تعداد نتایج:

108

مرتبط ترین ها

به روز ترین ها

پر بازدیدترین ها

پر دانلودترین ها

فیلتر ها

از سال

تا سال

زبان

نوع محتوا

نوع دسته بندی

متن کامل

Design of a Hybrid Data-Driven Classification Model for Optimal Selection of Non-destructive Testing Methods in Weld Inspection

کلیدواژه: Non-destructive inspection, Weld Inspection, Machine Learning, Xgboost, Data-Driven Modeling

نویسندگان: Nazari Gharibdoosti Amirmahdi, Sarai Tabrizi Mahdi

ناشر: فناوری آزمون های غیرمخرب - Non-destructive Testing Technology

Selecting the most suitable Non-destructive Testing (NDT) method in industries such as energy, transportation, automotive, aerospace, and oil and gas significantly contributes to quality improvement, minimizing human errors, and reducing operational costs. In this study, a smart, Data-Driven classif... ادامه

سال:2024

لینک به محتوا با زبان هدف

مشاهده/دانلود

A Hybrid Model for Back-Break Prediction using Xgboost Machine Learning and Metaheuristic Algorithms in Chadormalu Iron Mine

کلیدواژه: backbreak, extreme gradient boosting (XGB), Particle swarm optimization (PSO), gray wolf optimization (GWO), Chadormalu iron mine

نویسندگان: Nabavi Zohreh, Mirzehi Mohammad, Dehghani Hesam, Ashtari Pedram

ناشر: معدن و محیط زیست - JOURNAL OF MINING AND ENVIRONMENTAL (INTERNATIONAL JOURNAL OF MINING & ENVIRONMENTAL ISSUES)

Back-break is one of the adverse effects of blasting, which results in unstable mine walls, high duration, falling Machinery, and inappropriate fragmentation. Thus, the economic benefits of the mine are reduced, and safety is severely affected. Back-break can be influenced by various parameters such... ادامه

سال:2023

لینک به محتوا با زبان هدف

مشاهده/دانلود

Modeling Of Monthly Evaporation Using Single and Hybrid-Wavelet Data-Driven Methods in Basins of Iran with Climate Variety

کلیدواژه: Climate, Evaporation, Data mining, Wavelet

نویسندگان: Emadi Ali Reza, Zamanzad-Ghavidel Sarvin, Zareie Soheila, Rashid-Niaghi Ali

ناشر: مهندسی آبیاری و آب ایران - Journal of Irrigation and Water Engineering

Evaporation as one of the natural parameters has always been considered by researchers. In this study, the monthly evaporation variable was modeled in two different climates of Iran using artificial neural network, adaptive fuzzy-neural inference system and gene expression programming methods and co... ادامه

سال:2022

لینک به محتوا با زبان هدف

مشاهده/دانلود

Modeling Of Monthly Evaporation Using Single and Hybrid-Wavelet Data-Driven Methods in Basins of Iran with Climate Variety

کلیدواژه: Climate, Evaporation, Data mining, Wavelet

نویسندگان: Emadi Ali Reza, Zamanzad Ghavidel Sarvin, Fazeli Sina, Zareie Soheila, Rashid Niaghi Ali

ناشر: مهندسی آبیاری و آب ایران - Journal of Irrigation and Water Engineering

Evaporation as one of the natural parameters has always been considered by researchers. In this study, the monthly evaporation variable was modeled in two different climates of Iran using artificial neural network, adaptive fuzzy-neural inference system and gene expression programming methods and co... ادامه

سال:2022

لینک به محتوا با زبان هدف

مشاهده/دانلود

Multi-Objective Modeling of Green Vehicle Routing Problem Using a Hybrid Extreme Learning Machine (ELM) and Genetic Programming (GP)

کلیدواژه: Vehicle Routing Problem, Multi-Objective Model, Delivery and Pickup, Probabilistic demand, Extreme Learning Machine, Genetic Programming

نویسندگان: Ershadi Mohammad Mehdi, Momeni Sharifabad Mahsa, Ershadi Mohammad Javad, Azizi Amir, Behzadi pour Samaneh

ناشر: مدیریت زنجیره تامین - Supply Chain Management

Transportation plays a significant role in the gross domestic product and oil consumption of every nation. In our country, a combination of recent sanctions and underdeveloped rail, air, and sea transportation systems has led to an increased reliance on road transport. Unfortunately, road transport ... ادامه

سال:2024

لینک به محتوا با زبان هدف

مشاهده/دانلود

Hybrid Learning Machine Metaheuristic Model for Estimating Groundwater Level

کلیدواژه: Groundwater level,Weighted least square support vector machine,Particle swarm optimization,Gravitational search algorithm-Efficiency

نویسندگان: Khosravi Shiva, Robati Amir

ناشر: مهندسی عمران مدرس - Modares Civil Engineering journal

Groundwater is the most reliable source of supply for potable water and supports a wide array of economic and environmental services. There is a significant concern that groundwater levels are declining due to intense aquifer use. The sustainable management of groundwater resources requires good pla... ادامه

سال:2021

لینک به محتوا با زبان هدف

مشاهده/دانلود

Introducing a Nonlinear Model Based on Hybrid Machine Learning for Modeling and Prediction of Precipitation and Comparison with SDSM Method (Cases Studies: Shahrekord, Barez, and Yasuj)

کلیدواژه: Climate change,Downscaling,Machine learning,Precipitation

نویسندگان: Valikhan Anaraki Mahdi, Mousavi Sayed Farhad, FARZIN SAEED, KARAMI HOJAT

ناشر: تحقیقات آب و خاک ایران - Iranian Journal of Soil and Water Research

In the present study, a Nonlinear hybrid model, based on multivariate adaptive regression splines (MARS), artificial neural networks (ANN) and K-nearest neighbor (KNN) has been presented for downscaling the precipitation of Shahrekord, Barez, and Yasuj under climate change conditions. This model, si... ادامه

سال:2020

لینک به محتوا با زبان هدف

مشاهده/دانلود

Simulation of Groundwater Level Using the Hybrid Model Wavelet-Self Adaptive Extreme Learning Machine

کلیدواژه: Artificial intelligence,Groundwater aquifer,Hybrid model,Kabodarahang,Simulation

نویسندگان: MALEKZADEH MARYAM, KARDAR SAEID, SHABANLOU SAEID

ناشر: تحقیقات آب و خاک ایران - Iranian Journal of Soil and Water Research

In present study, the groundwater level of the Kabodarahang region located in Hamadan Province was simulated using novel techniques such as Self-Adaptive Extreme Learning Machine (SAELM) and WaveletSelf-Adaptive Extreme Learning Machine (WA-SAELM). Firstly, the effective lags were detected using the... ادامه

سال:2020

لینک به محتوا با زبان هدف

مشاهده/دانلود

The Presentation of a Hybrid Anomaly Detection Model Using Inverse Weight Clustering and Machine Learning in Cloud Environments

کلیدواژه: IDS,Cloud Computing,Fog Computing,Anomaly Detection,IoT

نویسندگان: Jafar Gholi Beik A., Shiri Ahmad Abadi M. E., Rezakhani A.

ناشر: پدافند الکترونیکی و سایبری - JOURNAL OF ELECTRONIC AND CYBER DEFENCE

Today, due to highly advanced attacks and intrusions, it has become very difficult to detect IoT attacks in cloud environments. Other problems with cloud systems include low error detection accuracy, false positive rates, and long computation times. In the proposed method, we present a hybrid intrus... ادامه

سال:2021

لینک به محتوا با زبان هدف

مشاهده/دانلود

The efficiency of Data-Driven Models for Months ahead Groundwater Level Forecasting Using a Hybrid Gamma Test and Genetic Algorithm Model

کلیدواژه: Groundwater levels,Gamma Test,Artificial neural network,SVR,Genetic Algorithm

نویسندگان: mirarabi ali, Naseri Hamidreza, NAKHAEI MOHAMMAD, Alijani Farshad

ناشر: زمین شناسی کاربردی پیشرفته - ADVANCED APPLIED GEOLOGY

In order to implement sustainable groundwater resources management, it is necessary to model the behavior of groundwater level. Groundwater is a Nonlinear and complex system which Data-Driven models can be modeled this system without approximation and simplification. This study evaluates the perform... ادامه

سال:2018

لینک به محتوا با زبان هدف

مشاهده/دانلود

فیلتر ها

از سال

تا سال

زبان

نوع محتوا

دسته بندی

متن کامل